DataLoaders

DataLoader
bs = 4
letters = list(string.ascii_lowercase)

DataLoader 辅助函数

fastai 包含一个替代 PyTorch DataLoader 的类,它在很大程度上与 API 兼容,并增加了许多有用的功能和灵活性。在我们查看该类之前,需要先定义几个辅助函数。


源文件

fa_collate

 fa_collate (t)

一个替代 PyTorch default_collate 的函数,它保留类型并处理 Sequence

#e.g. x is int, y is tuple
t = [(1,(2,3)),(1,(2,3))]
test_eq(fa_collate(t), default_collate(t))
test_eq(L(fa_collate(t)).map(type), [Tensor,tuple])

t = [(1,(2,(3,4))),(1,(2,(3,4)))]
test_eq(fa_collate(t), default_collate(t))
test_eq(L(fa_collate(t)).map(type), [Tensor,tuple])
test_eq(L(fa_collate(t)[1]).map(type), [Tensor,tuple])

源文件

fa_convert

 fa_convert (t)

一个替代 PyTorch default_convert 的函数,它保留类型并处理 Sequence

t0 = array([1,2])
t = [t0,(t0,t0)]

test_eq(fa_convert(t), default_convert(t))
test_eq(L(fa_convert(t)).map(type), [Tensor,tuple])

源文件

SkipItemException

抛出此异常通知 DataLoader 跳过一个项目


源文件

collate_error

 collate_error (e:Exception, batch)

当批次无法 collate 时引发错误,说明批次中哪些项目大小不同及其类型


源文件

DataLoader

 DataLoader (dataset=None, bs=None, num_workers=0, pin_memory=False,
             timeout=0, batch_size=None, shuffle=False, drop_last=False,
             indexed=None, n=None, device=None, persistent_workers=False,
             pin_memory_device='', wif=None, before_iter=None,
             after_item=None, before_batch=None, after_batch=None,
             after_iter=None, create_batches=None, create_item=None,
             create_batch=None, retain=None, get_idxs=None, sample=None,
             shuffle_fn=None, do_batch=None)

继承此类,以便 self._xtra 中的所有属性访问都传递给 self.default

DataLoader 的参数

  • dataset:从中加载数据的数据集。可以是映射式数据集或可迭代式数据集。
  • bs (int):每个批次加载多少个样本(如果提供了 batch_size,则 batch_size 将覆盖 bs)。如果 bs=None,则假定 dataset.__getitem__ 返回一个批次。
  • num_workers (int):用于数据加载的子进程数量。0 表示数据将在主进程中加载。
  • pin_memory (bool):如果为 True,数据加载器将在返回 Tensors 之前将其复制到 CUDA 固定内存中。
  • timeout (float>0):从工作进程收集批次的超时时间(秒)。
  • batch_size (int):仅为 PyTorch 兼容性提供。请使用 bs
  • shuffle (bool):如果为 True,则数据加载器在每次完全读取/迭代时都会打乱数据。
  • drop_last (bool):如果为 True,则丢弃最后一个不完整的批次。
  • indexed (bool):DataLoader 会猜测数据集是否可索引(或可迭代),但您可以通过此参数覆盖它。默认为 True
  • n (int):默认为 len(dataset)。如果您使用可迭代式数据集,可以通过 n 指定大小。
  • device (torch.device):默认为 default_device(),默认为 CUDA。您可以指定设备为 torch.device('cpu')

覆盖 create_item 并使用默认的无限采样器获取未知长度的数据流(在需要停止数据流时调用 stop())。

class RandDL(DataLoader):
    def create_item(self, s):
        r = random.random()
        return r if r<0.95 else stop()

L(RandDL())
(#9) [0.09071201211613367,0.03249811556595483,0.6517029228593939,0.8584412116263038,0.759838440232556,0.3725873327679504,0.1445316323722865,0.18876233969606782,0.25518635091544917]
L(RandDL(bs=4, drop_last=True)).map(len)
(#1) [4]
dl = RandDL(bs=4, num_workers=4, drop_last=True)
L(dl).map(len)
(#1) [4]
test_num_workers = 0 if sys.platform in ("win32","darwin") else 4
test_eq(dl.fake_l.num_workers, test_num_workers)
with dl.fake_l.no_multiproc(): 
    test_eq(dl.fake_l.num_workers, 0)
    L(dl).map(len)
test_eq(dl.fake_l.num_workers, test_num_workers)
def _rand_item(s):
    r = random.random()
    return r if r<0.95 else stop()

L(DataLoader(create_item=_rand_item))
(#2) [0.624781366539204,0.39823513973618685]

如果您未设置 bs,则假定 dataset 提供一个迭代器或一个返回批次的 __getitem__ 方法。

ds1 = DataLoader(letters)
test_eq(L(ds1), letters)
test_eq(len(ds1), 26)

test_shuffled(L(DataLoader(letters, shuffle=True)), letters)

ds1 = DataLoader(letters, indexed=False)
test_eq(L(ds1), letters)
test_eq(len(ds1), 26)

t2 = L(tensor([0,1,2]),tensor([3,4,5]))
ds2 = DataLoader(t2)
test_eq_type(L(ds2), t2)

t3 = L(array([0,1,2], dtype=np.int64),array([3,4,5], dtype=np.int64))
ds3 = DataLoader(t3)
test_eq_type(L(ds3), t3.map(tensor))

ds4 = DataLoader(t3, create_batch=noop, after_iter=lambda: setattr(t3, 'f', 1))
test_eq_type(L(ds4), t3)
test_eq(t3.f, 1)

如果您设置了 bs,则假定 dataset 提供一个迭代器或一个返回批次中单个项目的 __getitem__ 方法。

def twoepochs(d): return ' '.join(''.join(list(o)) for _ in range(2) for o in d)
ds1 = DataLoader(letters, bs=4, drop_last=True, num_workers=0)
test_eq(twoepochs(ds1), 'abcd efgh ijkl mnop qrst uvwx abcd efgh ijkl mnop qrst uvwx')

ds1 = DataLoader(letters,4,num_workers=2)
test_eq(twoepochs(ds1), 'abcd efgh ijkl mnop qrst uvwx yz abcd efgh ijkl mnop qrst uvwx yz')

ds1 = DataLoader(range(12), bs=4, num_workers=3)
test_eq_type(L(ds1), L(tensor([0,1,2,3]),tensor([4,5,6,7]),tensor([8,9,10,11])))

ds1 = DataLoader([str(i) for i in range(11)], bs=4, after_iter=lambda: setattr(t3, 'f', 2))
test_eq_type(L(ds1), L(['0','1','2','3'],['4','5','6','7'],['8','9','10']))
test_eq(t3.f, 2)

it = iter(DataLoader(map(noop,range(20)), bs=4, num_workers=1))
test_eq_type([next(it) for _ in range(3)], [tensor([0,1,2,3]),tensor([4,5,6,7]),tensor([8,9,10,11])])

可迭代数据加载器需要进行特定测试。

class DummyIterableDataset(IterableDataset):
    def __iter__(self):
        yield from range(11)

ds1 = DataLoader(DummyIterableDataset(), bs=4)
# Check it yields fine, and check we can do multiple passes
for i in range(3):
    test_eq_type(L(ds1), L(tensor([0,1,2,3]),tensor([4,5,6,7]),tensor([8,9,10])))

# Check `drop_last` works fine (with multiple passes, since this will prematurely terminate the iterator)
ds1 = DataLoader(DummyIterableDataset(), bs=4, drop_last=True)
for i in range(3):
    test_eq_type(L(ds1), L(tensor([0,1,2,3]),tensor([4,5,6,7])))
class SleepyDL(list):
    def __getitem__(self,i):
        time.sleep(random.random()/50)
        return super().__getitem__(i)

t = SleepyDL(letters)




dl = DataLoader(t, shuffle=True, num_workers=1)
test_shuffled(L(dl), letters)
test_shuffled(L(dl), L(dl))
L(dl)
CPU times: user 3.35 ms, sys: 890 µs, total: 4.24 ms
Wall time: 307 ms
CPU times: user 6.93 ms, sys: 860 µs, total: 7.79 ms
Wall time: 333 ms
CPU times: user 7.78 ms, sys: 722 µs, total: 8.51 ms
Wall time: 331 ms
(#26) ['l','h','f','r','z','s','u','x','m','p'...]
class SleepyQueue():
    "Simulate a queue with varying latency"
    def __init__(self, q): self.q=q
    def __iter__(self):
        while True:
            time.sleep(random.random()/100)
            try: yield self.q.get_nowait()
            except queues.Empty: return

q = Queue()
for o in range(30): q.put(o)
it = SleepyQueue(q)

if not (sys.platform == "win32" and IN_NOTEBOOK):
class A(TensorBase): pass

for nw in (0,2):
    t = A(tensor([1,2]))
    dl = DataLoader([t,t,t,t,t,t,t,t], bs=4, num_workers=nw)
    b = first(dl)
    test_eq(type(b), A)

    t = (A(tensor([1,2])),)
    dl = DataLoader([t,t,t,t,t,t,t,t], bs=4, num_workers=nw)
    b = first(dl)
    test_eq(type(b[0]), A)
list(DataLoader(list(range(50)),bs=32,shuffle=True,num_workers=3))
[tensor([42, 12, 44, 21,  8,  6,  3, 37, 33,  9, 27, 34, 18, 26,  1, 23, 11, 41,
         15,  0, 49,  4, 38, 46, 48, 14, 40, 36, 17, 45, 30, 29]),
 tensor([19, 10, 22, 13, 25, 32, 35,  5,  2, 20, 47, 39, 16, 28, 43,  7, 31, 24])]
class A(TensorBase): pass
t = A(tensor(1,2))

tdl = DataLoader([t,t,t,t,t,t,t,t], bs=4, num_workers=2, after_batch=to_device)
b = first(tdl)
test_eq(type(b), A)

# Unknown attributes are delegated to `dataset`
test_eq(tdl.pop(), tensor(1,2))

覆盖 get_idxs 以在 DL 消耗完成之前返回相同的索引。这旨在测试当 num_workers>1 时一致的采样行为。

class AdamantDL(DataLoader):
    def get_idxs(self):
        r=random.randint(0,self.n-1)
        return [r] * self.n

test_eq(torch.cat(tuple(AdamantDL((list(range(50))),bs=16,num_workers=4))).unique().numel(),1)
# from subprocess import Popen, PIPE
# # test num_workers > 0 in scripts works when python process start method is spawn
# process = Popen(["python", "dltest.py"], stdout=PIPE)
# _, err = process.communicate(timeout=15)
# exit_code = process.wait()
# test_eq(exit_code, 0)