from fastai.vision.all import *Captum
在本笔记本中,我们将使用以下数据
path = untar_data(URLs.PETS)/'images'
fnames = get_image_files(path)
def is_cat(x): return x[0].isupper()
dls = ImageDataLoaders.from_name_func(
path, fnames, valid_pct=0.2, seed=42,
label_func=is_cat, item_tfms=Resize(128))from random import randintlearn = vision_learner(dls, resnet34, metrics=error_rate)
learn.fine_tune(1)Captum 解释
这篇 Distill 文章(此处)提供了关于选择何种基线图像的良好概述。我们可以逐一尝试。
CaptumInterpretation
CaptumInterpretation (learn, cmap_name='custom blue', colors=None, N=256, methods=('original_image', 'heat_map'), signs=('all', 'positive'), outlier_perc=1)
Resnet 的 Captum 解释
解释
captum=CaptumInterpretation(learn)
idx=randint(0,len(fnames))
captum.visualize(fnames[idx])
captum.visualize(fnames[idx],baseline_type='uniform')
captum.visualize(fnames[idx],baseline_type='gauss')
captum.visualize(fnames[idx],metric='NT',baseline_type='uniform')
captum.visualize(fnames[idx],metric='Occl',baseline_type='gauss')
Captum Insights 回调
@patch
def _formatted_data_iter(x: CaptumInterpretation,dl,normalize_func):
dl_iter=iter(dl)
while True:
images,labels=next(dl_iter)
images=normalize_func.decode(images).to(dl.device)
yield Batch(inputs=images, labels=labels)CaptumInterpretation.insights
CaptumInterpretation.insights (x:__main__.CaptumInterpretation, inp_data, debug=True)
captum=CaptumInterpretation(learn)
captum.insights(fnames)