RNN 训练的回调函数
使用语言模型输出添加 AR 和 TAR 正则化的回调函数
ModelResetter
ModelResetter (after_create=None, before_fit=None, before_epoch=None, before_train=None, before_batch=None, after_pred=None, after_loss=None, before_backward=None, after_cancel_backward=None, after_backward=None, before_step=None, after_cancel_step=None, after_step=None, after_cancel_batch=None, after_batch=None, after_cancel_train=None, after_train=None, before_validate=None, after_cancel_validate=None, after_validate=None, after_cancel_epoch=None, after_epoch=None, after_cancel_fit=None, after_fit=None)
Callback
在每个验证/训练步骤重置模型的回调函数
RNNCallback
RNNCallback (after_create=None, before_fit=None, before_epoch=None, before_train=None, before_batch=None, after_pred=None, after_loss=None, before_backward=None, after_cancel_backward=None, after_backward=None, before_step=None, after_cancel_step=None, after_step=None, after_cancel_batch=None, after_batch=None, after_cancel_train=None, after_train=None, before_validate=None, after_cancel_validate=None, after_validate=None, after_cancel_epoch=None, after_epoch=None, after_cancel_fit=None, after_fit=None)
保存原始输出和丢弃输出,仅保留真实输出用于损失计算
RNNRegularizer
RNNRegularizer (alpha=0.0, beta=0.0)
添加 AR 和 TAR 正则化
rnn_cbs
rnn_cbs (alpha=0.0, beta=0.0)
(可选地进行正则化的) RNN 训练所需的所有回调函数